
            Version: 0.1 
          Published: 6.1.2015
             Author: Kustaa Nyholm
          Copyright: (C) 2015 Kustaa Nyholm / Siuntio Finland
            Contact: eazycnc@sparetimelabs.com

EazyCNC Plugin Writers' Guide

Quick Links
Introduction
First taste of Java plugins
Setting up for Plugin Development
Debugging Plugins

Attaching (or not!) a Debugger

Anatomy of a Plugin

Plugin loading process
Plugin naming

Writing Plugins

Java version
Libraries
Plugin lifecycle

Saving plugin state
Accessing EazyCNC functionality
Writing User Interface code

The Universal Widget Kit

Custom Widget Graphics

Layouts and laying out widgets
Variables
Widgets and Variables at play

Examples

EazyCNC Plugin Writers' Guide

file:///Users/nyholku/sparetimelabs/eazycnc/plugindev/plugin-writers-guide.md#toc_0
file:///Users/nyholku/sparetimelabs/eazycnc/plugindev/plugin-writers-guide.md#toc_1
file:///Users/nyholku/sparetimelabs/eazycnc/plugindev/plugin-writers-guide.md#toc_2
file:///Users/nyholku/sparetimelabs/eazycnc/plugindev/plugin-writers-guide.md#toc_3
file:///Users/nyholku/sparetimelabs/eazycnc/plugindev/plugin-writers-guide.md#toc_4
file:///Users/nyholku/sparetimelabs/eazycnc/plugindev/plugin-writers-guide.md#toc_5
file:///Users/nyholku/sparetimelabs/eazycnc/plugindev/plugin-writers-guide.md#toc_6
file:///Users/nyholku/sparetimelabs/eazycnc/plugindev/plugin-writers-guide.md#toc_7
file:///Users/nyholku/sparetimelabs/eazycnc/plugindev/plugin-writers-guide.md#toc_8
file:///Users/nyholku/sparetimelabs/eazycnc/plugindev/plugin-writers-guide.md#toc_9
file:///Users/nyholku/sparetimelabs/eazycnc/plugindev/plugin-writers-guide.md#toc_10
file:///Users/nyholku/sparetimelabs/eazycnc/plugindev/plugin-writers-guide.md#toc_11
file:///Users/nyholku/sparetimelabs/eazycnc/plugindev/plugin-writers-guide.md#toc_12
file:///Users/nyholku/sparetimelabs/eazycnc/plugindev/plugin-writers-guide.md#toc_13
file:///Users/nyholku/sparetimelabs/eazycnc/plugindev/plugin-writers-guide.md#toc_14
file:///Users/nyholku/sparetimelabs/eazycnc/plugindev/plugin-writers-guide.md#toc_15
file:///Users/nyholku/sparetimelabs/eazycnc/plugindev/plugin-writers-guide.md#toc_16
file:///Users/nyholku/sparetimelabs/eazycnc/plugindev/plugin-writers-guide.md#toc_17
file:///Users/nyholku/sparetimelabs/eazycnc/plugindev/plugin-writers-guide.md#toc_18
file:///Users/nyholku/sparetimelabs/eazycnc/plugindev/plugin-writers-guide.md#toc_19
file:///Users/nyholku/sparetimelabs/eazycnc/plugindev/plugin-writers-guide.md#toc_20
file:///Users/nyholku/sparetimelabs/eazycnc/plugindev/plugin-writers-guide.md#toc_21
file:///Users/nyholku/sparetimelabs/eazycnc/plugindev/plugin-writers-guide.md#toc_22


Customising EazyCNC User Interface
Implementing a custom spindle controller
Creating a Pendant plugin
Implementing a custom tool path rendering
Extending G-codes
Implementing a custom motor controller

Following links are listed here so that you will not have to search for them among the text.

Download EazyCNC Plugin Interface Javadoc

Download Example Plugin Code

Plugins are small pieces of program code that EazyCNC calls at specific times and situations to allow the
extending or customising of the EazyCNC functionality.

This document is the 'straight dope', from programmer to programmer, not intended (though no disrespect)
for the average CNC machinist who only wants to craft some G-code and cut metal.

While writing plugins is not that difficult, some experience with programming is necessary. If you are still
only learning to program, writing plugins for a machine tool can seriously damage both your health and
wealth, and therefore may not be a good idea.

Plugins are written in Java, so for their programming it is necessary to have a good grasp of basic Java
programming. This manual does not contain Java tutorial material and therefore assumes a decent level of
familiarity with Java.

This document describes the fundamentals of writing plugins with a number of examples. For details,
please see the definitive reference EazyCNC Plugin Interface Javadoc.

Plugin writing for EazyCNC is still in its infancy, so API/ABI breakage as well as errors and omissions in
documentation (not to mention implementation) are still the norm and should be expected. Rather than
struggling with problems by themselves budding plugin authors urged contact join the mailing list at
eazycnc@freelists.org or contact eazycnc@sparetimelabs.com for friendly advice.

Plugins can be distributed either as source code (as .java files) or pre-compiled (as .class or .jar files). If
they are distributed as source code, EazyCNC will automatically compile them when it starts up and cache

Quick Links

Introduction

First taste of Java plugins

file:///Users/nyholku/sparetimelabs/eazycnc/plugindev/plugin-writers-guide.md#toc_23
file:///Users/nyholku/sparetimelabs/eazycnc/plugindev/plugin-writers-guide.md#toc_24
file:///Users/nyholku/sparetimelabs/eazycnc/plugindev/plugin-writers-guide.md#toc_25
file:///Users/nyholku/sparetimelabs/eazycnc/plugindev/plugin-writers-guide.md#toc_26
file:///Users/nyholku/sparetimelabs/eazycnc/plugindev/plugin-writers-guide.md#toc_27
file:///Users/nyholku/sparetimelabs/eazycnc/plugindev/plugin-writers-guide.md#toc_28
file:///Users/nyholku/sparetimelabs/eazycnc/plugindev/javadoc.zip
file:///Users/nyholku/sparetimelabs/eazycnc/plugindev/plugins.zip
file:///Users/nyholku/sparetimelabs/eazycnc/plugindev/javadoc.zip
http://www.freelists.org/list/eazycnc
mailto:eazycnc@sparetimelabs.com


the compiled files.

To create a plugin, you need to place a .java file in a directory inside the plugins  directory in the
EazyCNC home directory.

When EazyCNC starts up, it searches the plugins  directory as well as any subdirectories for plugin
code and loads everything it finds.

To give you a taste of writing a plugin, here is a Hello World  -plugin for EazyCNC.

// Needs to be in a file named HelloWordlPlugin.java 
import com.eazycnc.plugin.*;

public class HelloWorldPlugin extends Plugin {
        public void onInit() {
            System.err.println("Hello World!");
        }        
    }

Place the above piece of code in a directory named helloworld  inside the plugins  directory. If
everything goes as it should, when EazyCNC starts up you will see the text Hello World!  (amid lots of
other information) output to the Java console.

To bring up the Java console, hit the F12 function key on your keyboard.

You should now see something like (note the last but one line):



In its simplest form, all you need is a text editor.

Just take the 'Hello World' plugin code (above), place it in a directory inside the plugins directory under the
EazyCNC home directory, fire up EazyCNC and Bob's your uncle!

More specifically, assuming your username is nyholku  and that you are using Mac OS X, place the
above code in a text file whose path is:

/Users/nyholku/EazyCNC/plugins/myfirstplugin/HelloWorldPlugin.java

It is important that the text file does not have the extension .txt  but rather the extension .java . Is is
also required that the file name be the same as the class name that it defines; therefore if you rename the
class, you need to rename the file as well (and vice versa).

Please also note that when you make changes to your plugin source code, you need to restart EazyCNC
for the program to notice the changes and recompile the code so your changes take effect.

Setting up for Plugin Development



Any errors during compiling will be output to the Java console, so keep a keen eye on it!

But maybe you are not happy with a simple text editor and would rather want something with code
completion and syntax colouring?

No problem, plenty of choice there. And while this is no Eclipse tutorial, here are a few tips that may help
you set up Eclipse for EazyCNC plugin development.

Start by creating a directory for you plugin code ( myfirstplugin  above) and placing the
HelloWorldPlugin.java  file there.

Next, you need to create a new Java project. Select File/New/Java Project...  and give your
project a name. You can both use the default location for the project, in which case it'll be created in the
current workspace, or place it somewhere else - but don't use the myfirstplugin  directory as the
location. Click Finish  to create the project.

Next, you need to add the file EazyCNC-plugin-classes.jar  to the build path of your project. To do
that, right-click on the project name in the Package Explorer  and select
Build Path/Configure Build Path... . If the Package Explorer  is not visible, bring it up

from the Window/Show View  menu.

Lastly, add the plugin source code to your project. Right-click on the src  directory under the project
name and select File/New File  from the menu. In the dialogue that appears, click Advanced>> ,
tick the Link to file in the file system , then click on the Browse...  button and browse to
the plugin java source file, click Open  and then Finish . (Things get a little bit more complicated if you
want to place your classes into anything but the default Java package1.)

If everything went smoothly, there should be no compile errors indicated and you should be able to see that
the automatic code suggestion/completion works, and you are ready to code!

But - a few things to note.

Eclipse will automatically compile your code, but EazyCNC does not use the Eclipse-compiled .class

files[^3]. Instead, EazyCNC compiles the code on its own when it starts up and searches for plugins,
cacheing the results in the EasyCNC/plugins-cached .

[3]: You can make EazyCNC to use the Eclipse compiled files if you want. In this case you need to copy the
.class  files from the Eclipse projects output directory (usually bin  or classes ) to your plugin

directory.

Also note that you can't just Run/Debug  your code in Eclipse. To run the code, you need to start
EazyCNC, which will then automatically pick up the code.

You can start EazyCNC any way you want or create an external run configuration for it in Eclipse.

file:///Users/nyholku/sparetimelabs/eazycnc/plugindev/plugin-writers-guide.md#fn1


No programming task worth mentioning is going to work the first time around, so debugging is an integral
part of the development process.

The easiest and safest way to debug is just to output debug information to the console.

The console can be viewed by pressing the F12 key when EazyCNC is running. This brings up a window
inside EazyCNC where all the stuff output by the EazyCNC code and all the plugins appear. To hide the
console, press F12 again.

To output things to the console, use the standard Java idiom:

    System.out.println("Here comes the output");

or

    System.out.printf("C-style printing!\n");

You can also use the standard System.err  stream, in which case the output appears red in the console
(instead of green).

If you start EazyCNC from the command line, you can also pass the argument -noconsole  to
EazyCNC on the command line. This will make all output appear in the terminal window from which you
started the application.

To start the EazyCNC-application from the command line, type in your terminal the following:

java -jar EazyCNC.jar

Note that EazyCNC.jar is usually not available as the EazyCNC application is packed as a native
executable for the operating system. If you want/need the EazyCNC.jar file, please contact
sparetimelabs.com.

Now, why did I say the safest way to debug is to output stuff to the console?

Because EazyCNC is (by necessity) a multithreaded real-time application which controls real world physical
devices. If you attach a debugger to the code and set a break point, this will (a) not stop the whole program,
only the single thread, while the rest of the code keeps ploughing on, nor will (b) the physical world
magically stop; motors will continue running, the plasma torch will keep cutting and so on - only now out of
control, because you've just stopped the program that manages them.

Debugging Plugins

Attaching (or not!) a Debugger



Having said that, it is possible to attach a debugger to EazyCNC using the Java remote debugging facility.

To attach the debugger, it is necessary to start EazyCNC from the command line with the following
mouthful:

java -Xdebug -Xrunjdwp:transport=dt_socket,address=8000,server=y,suspend=y -jar Ea
zyCNC.jar 

Having launched EazyCNC with the above command, you can now attach your favourite debugger, be it the
old rusty jdb  or Eclipse's fancy GUI thingy.

Just google java remote debugging  and you will find plenty of advice.

In Eclipse, meanwhile, you need to create a new debug configuration; go to
Run/Debug Configurations...  and under Remote Java Application  create a new

configuration. However, please remember that before you use the new configuration you need to first
launch EazyCNC in debug mode as described above.

A plugin is any class of Java that extends the com.eazycnc.plugin.Plugin  class.

The Plugin  class defines a number of methods which you override to change or extend the functionality
of EazyCNC.

When EazyCNC starts up it scans the Plugins  directory inside the EazyCNC home directory. The
location of the home directory depends on your operating system as follows:

Mac OS X    '/Users/username'
Windows XP  'C:\Documents and Settings\username'
Windows 7   'C:\Users\username'
Linux       '/home/username'

EazyCNC scans every subdirectory of the Plugins  directory for .java  source files. When the
application finds a java source file, it will next compare the file against the corresponding .class  file (if
one exists) in the Plugins-cached  directory. If the source file is more recent or the cached class file
does not exist, EazyCNC will compile the new source file and place the resulting class file into the
Plugins-cached  directory.

Next, EazyCNC will scan every .jar  file in the Plugins  directory as well as every subdirectory in the
Plugins  directory for .class  files.

Anatomy of a Plugin

Plugin loading process



Finally, the program checks every class encountered during the above scanning procedure to see if they
extend the `com.eazycnc.plugin.Plugin' class. If one does so, it then creates an instance of that class and
calls its onInit(). This is how a plugin comes to life.

The immediate subdirectory of the Plugins  directory containing a plugin is called the 'root' directory of
that plugin.

Again, note that every time you make changes to a plugin, you need to restart EazyCNC for the changes to
take effect.

All directory, class and file names are case-sensitive, but you should really avoid having names that only
differ in case, because not all file systems support this.

The name of the directory for your plugin does not matter, except that you'll probably want to use a name
that will not clash with other plugins people will be writing. Also note that directories beginning with '.' will be
ignored.

However, note that the directory and class/package names may show in error messages, so you might still
want to pay some attention to naming and casing.

No two plugins should contain classes with identical names 2. To avoid clashes it is recommended that all
plugins put their classes in a uniquely named package, for example by following the Java convention of
using an author owned domain name as the package name.

You can change a name at any time, but please note that the storage of Plugin data (if you use this feature)
is based on the plugin's root directory name, so changing its name will effectively wipe out anything a plugin
has saved unless you re-name the corresponding data directory, too.

As mentioned above, every plugin derives from, or in Java parlance extends, the
com.eazycnc.plugin.Plugin  class. So a minimal but useless plugin (that does nothing but causes a

few lines in the console output) would be:

import com.eazycnc.plugin.*;

public class MinimalPlugin extends Plugin {
    }

Most of the functionality your plugin provides is implemented by overriding one or more of the methods
defined in the Plugin  class.

Plugin naming

Writing Plugins

file:///Users/nyholku/sparetimelabs/eazycnc/plugindev/plugin-writers-guide.md#fn2


EazyCNC is built on Java 8, so most Java 8 SE (Standard Edition) classes can be used in EazyCNC
plugins as well.

However, any code that relies on the Swing toolkit will not work on Android 3. For this purpose, for coding
the user interface EazyCNC provides its own universal cross platform toolkit, which should be used instead
of Swing.

It is possible to include basically any pure Java library in your plugin.

EazyCNC uses and makes available for plugins the following libraries:

Library Purpose Interweb

JNA Access to native libraries github.com/twall/jna

PureJavaComm Access to serial ports github.com/nyholku/purejavacomm

PureJavaHidApi Access to USB HID devices github.com/nyholku/purejavahidapi

To use them it is enough to simply import  them, as they are in the class path for both the compiler and
the plugin at run time.

EazyCNC of course uses a number of other libraries as well, but their usage is not supported, i.e. they may
be removed in any future version of EazyCNC and thus cause any plugins that depend on them to fail.

After EazyCNC has loaded a plugin it calls the plugin's onInit()  method. If there is some one-time
initialisation you want to do, this is the place to do it.

Just before EazyCNC exits, the onExit()  method of the plugin gets called, and this is the place to do
whatever cleanup is necessary, like shutting down any hardware your plugin controls.

Some plugins need to 'remember' their state from one run of EazyCNC to another - things like name of a
communication port, which port controls what and so on.

To facilitate this, EazyCNC calls the onSave(String filename)  method of the plugin every time the
user clicks the Save  button. You then need to further override this method to implement saving the state.

Java version

Libraries

Plugin lifecycle

Saving plugin state

file:///Users/nyholku/sparetimelabs/eazycnc/plugindev/plugin-writers-guide.md#fn3
https://github.com/twall/jna
https://github.com/nyholku/purejavacomm
https://github.com/nyholku/purejavahidapi


When a plugin has been loaded and initialised, EazyCNC next calls the onLoad(String filename)

method - this is where you need to read the previous saved state from the file. Note, however, that your
onLoad  method also needs to handle the case even when there is no previously saved state (because

either it is the first time the plugin is executing or the user has never clicked the 'Save' button).

It is up to you how you maintain and save/load the state you want retained, but one easy way to do it is to
use the Java Properties  class, as in this example:

import com.eazycnc.plugin.*;

import java.util.*;
import java.io.*;

public class LoadSavePluginState extends Plugin {
    private Properties m_Properties = new Properties();

    @Override
    public void onLoad(String filename) throws Exception {
       try {
            m_Properties.load(new FileInputStream(filename));
        } catch(Exception e) {
            System.err.println("Failed to load properties from '"+filename+"'");
        }
    }

    @Override
    public void onSave(String filename) throws Exception {
        int saveCount=Integer.parseInt(m_Properties.getProperty("save_count","0"))
;
        m_Properties.setProperty("save_count",Integer.toString(saveCount+1));
        m_Properties.store(new FileOutputStream(filename),"Property list of an exa
mple plugin");
    }
}

The above example saves a counter, which counts the number of times the Save  button has been
clicked, in a file in the Plugins/plugin-data/  directory in the directory dedicated to your plugin. It
does this by maintaining a dictionary of properties in the m_Properties  member variable, which is
easily saved and loaded into a text file.

Some plugins need to access basic EazyCNC functionality such as RUN , HOLD  or STOP . Most of this
functionality can be invoked through EazyCNC.EazyCNC.executeAction()  method. To make it

Accessing EazyCNC functionality



easier to call those methods, it is best to make a wholesale static import of that class, like this:

import static com.eazycnc.plugin.EazyCNC.*;

after which you can execute EazyCNC actions simply by their name, like this:

executeAction("RUN",true); // same as clicking the RUN-button

Some actions execute, once started, until stopped, there fore this methods takes a second parameter
defining weather to start or stop the action.

For a list of available actions see the javadoc for EazyCNC.executeAction() .

EazyCNC provides a toolkit, named Universal Widget Kit (UWT), for creating graphical user interfaces. This
UI kit provides more or less the same widgets (buttons, checkboxes, entry fields etc.) as most other toolkits,
such as Java's built-in Swing. The main difference is that UWK allows writing code that works in all the
three major desktop operating systems, Mac OS X, Windows and Linux, and allows the same code to run
on Android as well. Additionally, it goes further that most toolkits in how it helps to implement functionality
behind the user interface elements.

To use the toolkit it is best to import all of it as follows:

import static com.eazycnc.uwt.UWT.*;
import com.eazycnc.uwt.*;
import com.eazycnc.uwt.widgets.*;

and while we are at it we might just as well import EazyCNC  class to gain access to most of the
EazyCNC functionality:

import static com.eazycnc.plugin.EazyCNC.*;

after which creating a push button is as simple as:

Button myButton = newButton("Click Me"); 
// above calls com.eazycnc.uwt.uwt.newButton

Note that all widget types are Java interfaces  so you cannot create instances of them using Java
new XXX  operation. Instead you need to create them by calling the static newXXX  methods in the
UIKit  class.

Writing User Interface code

The Universal Widget Kit



Some widgets, such as buttons, you can customise by providing you own graphics as .png  files.

You need to provide two version with names that adhere to the following convention. Suppose you want to
call your graphics 'mybutton', you then need to provide two files named mybutton.png  and
mybutton_selected.png .

You need to save these files in a directory where one of your plugins classes (the .java ) file resides.

Finally you need tell UWK where the files are, you do that by passing the afore mentioned class to the UWT
by calling EazyCNC.setResourceLoaderClass() .

Suppose your plugin is called MyPlugin  and your plugin class is called
com.mydomain.AwesomePlugin , the you save the graphics files into directory
plugins/MyPlugin/com/mydomain/  inside the EazyCNC's home directory and you info UWT about

them like this:

UWK.setResourceClass(com.mydomain.AwesomePlugin.class);

Or if you simply place all your stuff (plugin .java -files and resources etc) into one directory, make the
above call from within the plugin class itself and did the imports as recommended above, you can simply
do:

setResourceClass(this.getClass());

Note that you need to do this only once if you keep all your graphics in one directory.

Once UWK knows about your graphics you can create a button with your cool custom graphics simply like
this:

Button my1stButton = newButton("mybutton", "Click Me");

It is also possible to use the EazyCNC built in graphics, for list of available graphics see the javadoc for
UWK.newButton(String,String) .

For example code like this:

    Button my3rdtButton = newButton("button_red", "Click Red Too");

creates a button that looks like this:

Custom Widget Graphics



The user interface is made of widgets arranged into layouts. Layouts can be nested, but usually you are
better off not nesting them. Typically, you create just one layout by instantiating a class Layout  (from
the package com.eazycnc.widgets ) and adding components to it.

The components are arranged into a grid-like geometry according to the constraints you provide when you
add them. This allows the very easy and mostly intuitive creation of professional-looking layouts with
minimal coding. The magic is performed under the hood by a layout engine called MigLayout.

To learn everything about layouts, constraints and MigLayout, go to:

www.miglayout.com

MigLayout is a very popular layout engine, so examples are easy to google and Stack Overflow provide a
lot of answers, too.

For example, the following short code creates this nice layout:

Before we go deeper into widgets, however, a few lines on Variables. These are not you granddad's ints
and booleans, but instances of the class (well, interface, really) Variable.

Variables are an integral part of how the user interface widgets interact with both each other and the rest of
the application. If you are familiar with the Model Control View programming pattern, think of them as part of
the Model, with the widgets carrying out the roles of Control and View.

Basically, Variables are just what the name says - variables that store some data. The type of data can be
anything, but mostly it is just 'primitive', plain old data.

The main reason for the existence of Variables is to allow widgets to attach Observers (and other patterns)
to them so that when one widget (or anything, really) changes, the other widgets attached to the variable
are notified.

For example, if you attach an entry field to a variable, then any other entry field attached to it will display
and track the same value when the user enters a number into any of the attached entry fields.

The second reason for the existence of Variables is to allow the attaching of additional information to the
data, such as minimum and maximum values or other means of validating user input.

Layouts and laying out widgets

Variables

http://www.miglayout.com/


When the user attempts to change the value of a variable, the widget consults the variable to ascertain that
the value is acceptable and rejects invalid values with the appropriate error indication if it isn't.

There is more than this to Variables, of course, but at this point it is enough to just introduce the concept.

In practice, most Variables are instances of the classes SimpleVariable  and NumericVariable

in the package com.eazycnc.uwt .

When you create a variable, you pass it an initial value and, if you wish, the limits of the value. The
following example creates a numeric variable with the initial value of 1 and a valid range of values between
0 and 100 inclusive.

Variable myFirstVariable = new NumericVariable(1, 0, 100);

To demonstrate how widgets and Variables play together, consider the following code:

        Layout layout = newTitledLayout("My Stuff");

        Variable variable = new NumericVariable(1, 0, 10);

        layout.add(newLabel("Presets:"), "align right");
        layout.add(newComboBox(variable, "A", 1, "B", 2), "wrap");

        layout.add(newLabel("Value:"), "align right");
        layout.add(newTextField(variable, 16.0, 8),"wrap");
        Button button = newButton("Clear");
        layout.add(button,"skip");

        button.addActionListener(() -> variable.setValue(0));

which creates following user interface:

Notice how easily the widgets are added to the layout, line by line, left to right, with just a few constraints
thrown in.

If you try the above code, you will see how selecting A or B from the combobox sets the value of the

Widgets and Variables at play



variable to one or two respectively, which is reflected in the entry field. If you type in a value in the entry
field, the combobox will change to reflect that. Clicking on the Clear  button will set the variable to zero,
which is again reflected both in the entry field and the combobox.

If you try to enter an out-of-range (0..10) value in the entry box, you'll get an error message and the original
value is restored.

All this with just a few lines of code.

Complete worked out examples are available for downloading from plugin.zip.

These example should compile and run but the functionality in many of them has not been tested,
especially functionality that deals with real hardware.

You can try them out by copying the unzipped plugins  folder to your EazyCNC home folder. Note that
some of the examples do not work out of the box (but do no harm), rather they are intended as starting
points for experimenting.

Following table briefly lists the plugins and the features they demonstrate:

Examples

file:///Users/nyholku/sparetimelabs/eazycnc/plugindev/plugins.zip


Plugin Demonstrates

myfirstplugin Hello World - plugin, the simplest of them all

coolantplugin Accessing native DLL and hardware (parallel port) with JNA

customview(1)
Customising User interface by adding a set up view, buttons with custom
graphics

gcodeextension Adding new G-codes to EazyCNC

loadsavestate
Saving and loading of plugins state, for example set up information
(persistence if like fancy words)

pendantplugin
Accessing USB HID devices with PureJavaHIDAPI and creating a CNC -
Pendant

spindleplugin
Accessing a VFD (Variable Frequency Drive) -unit via serial port using
PureJavaComm

toolrenderer
Creating a custom OpenGL based renderer to display a ball nosed tool in
the 3D Toolpath View

widgetandvariables(1)
Laying out widgets with MigLayout and connecting them to Variables to
implement some settings the user can change

(1) these two plugins are mutually exclusive because they both add a custom view, so only one of them
should be used

The following chapters are based on above listed example code and give more insight into the example
code. You should study them side by side.

[See widgetandvariables  and customview  -plugins]

Now that we know the basics of creating a user interface, let's see about customising the actual EazyCNC
user interface.

For illustration, the below code will add a new 'view' to the top half of the EazyCNC window. The view could
be e.g. one where additional setup information would be entered for a plugin, such as USB I/O port
configuration, or... anything, really.

For the purposes of simplicity, however, this view will contain just one button, the clicking of which will
output a message to the console.

Now, to add this view, we need to override the onCreateViewButtons  method. This method has two

Customising EazyCNC User Interface



arguments; (1) a special stack layout object, like a stack of cards in which only one card is visible at a given
time, and (2) a variable which holds a string controlling which of the cards is visible.

EazyCNC calls this method to create the view control buttons in the top left corner of the screen. Because
we do not want to lose any existing functionality, we will now need to create buttons that will bring up the
'standard' views. The 'stack of cards' already has all the views, however, so all we need to do is to create
buttons that set the view control variable to the appropriate names for the corresponding views. If we
wanted to hide a standard view, we would simply not add a button for it in this method.

After we have created the standard buttons, we create our own view complete with the 'Click Me' button,
and, giving it a name, add the view to the stack.

Finally, we add to the view control view a button that will set the view control variable to the name of our
view.

See the following code, it is pretty straightforward:



public class CustomViewPlugin extends Plugin {

    @Override
    public Layout onCreateViewButtons(Variable viewVar, CardLayout viewStack) {

        Layout layout = newTitledLayout("View", "flowy,fillx");

        layout.add(newToggleButton(viewVar, "G-Code", "g-code-view"), "growx");
        layout.add(newToggleButton(viewVar, "Coordinates", "coordinates-view"), "g
rowx");
        layout.add(newToggleButton(viewVar, "Work Offsets", "work-offsets-view"), 
"growx");
        layout.add(newToggleButton(viewVar, "Tool Setup", "tool-setup-view"), "gro
wx");
        layout.add(newToggleButton(viewVar, "Axis Setup", "axis-setup-view"), "gro
wx");
        layout.add(newToggleButton(viewVar, "Mach Setup", "mach-setup-view"), "gro
wx");

        Layout myView = newTitledLayout("My Stuff");
        viewStack.addCard("my-view", myView);

        Button my1stButton = newButton("Click Me");
        myView.add(my1stButton);
        my1stButton.addActionListener(() ->System.out.println("Button Clicked!"));
        
        layout.add(newToggleButton(viewVar, "My Stuff", "my-view"), "growx");

        return layout;
        }
}

and here is the resulting, customised, EazyCNC user interface:



Using the variables and entry fields with the saving and loading of the plugin state we learned about earlier,
we could easily expand this to a complete set-up view for our plugin.

The Plugin  class contains a dozen or so onCreateXxxView  methods, which you can override to
customise most of the EazyCNC user interface. Look up the javadoc for details.

[See spindleplugin -plugin]

In the following, we will be sketching out an imaginary Variable Frequency Driver (VFD) controller interface
plugin that uses a serial port to talk to a VFD controlling a spindle motor.

To implement a spindle controller it is enough to override the onUpdateSpindle  method. In this
method we will send commands to our imaginary VFD using a serial port.

But before we can use the serial port, we need to open it. This needs to be done by overriding the
setConnectionState  method. In this method, we will try to open the port. EazyCNC will keep on

calling the setConnectionState  as long as the connection state does not match the requested state.
This makes the system automatically retry the connection until it succeeds without any user intervention,
which is essential for a good user experience.

In the plugin we provide the following method:

Implementing a custom spindle controller



public class SpindlePlugin extends Plugin {

    private SerialPort m_CommPort;
    private String m_PrevCmd;
    private PrintStream m_Output;

    @Override
    public void setConnectionState(ConnectionState status) {
        if (status == ConnectionState.CONNECTED) {
            try {
                m_CommPort = (SerialPort) CommPortIdentifier.getPortIdentifier("CO
M").open("", 1);
                m_Output = new PrintStream(m_CommPort.getOutputStream());
                m_PrevCmd = null;
            } catch (NoSuchPortException e) {
                status = getConnectionState().DEVICE_NOT_FOUND;
            } catch (PortInUseException e) {
                status = getConnectionState().DEVICE_BUSY;
            } catch (IOException e) {
                status = getConnectionState().DEVICE_NOT_RESPONDING;
            }
        } else {
            if (m_CommPort != null) {
                m_CommPort.close();
                m_CommPort = null;
            }
        }
        super.setConnectionState(status);
    }

In the override for onUpdateSpindle , we check if the port is open and send (our imaginary) commands
to the VFD through the port. Because this method can be called hundreds of times per second and the
serial communication may be slow, we send a new command to the VFD only if the command actually
changes. In real life, this is not the safest strategy; a much better one would be to send the command
anyway at some max. number of times per second to ensure that even when there is a glitch somewhere,
the correct values eventually get updated. However, I wanted to keep the example simple, so the code for
this method now looks like this:



    @Override
    public boolean onUpdateSpindle(boolean spindleOn, boolean forward, int speed) 
{
        if (m_CommPort == null) {
            String cmd = "";
            if (spindleOn)
                cmd = "S-ON";
            else
                cmd = "S-OFF";
            if (forward)
                cmd += " FWD";
            else
                cmd += " REV";
            cmd += " SPEED " + speed;
            if (!cmd.equals(m_PrevCmd)) {
                m_Output.println(cmd);
                m_PrevCmd = cmd;
            }

        }
        return true;
    }

And that concludes this imaginary spindle control plugin. You can similarly override the
onUpdateCoolant  method to create a custom coolant controller.

As an aside, note that the onUpdateSpindle  return a boolean (true or false) to indicate weather this
method replaces the built in spindle control system or merely piggybacks on it. If this method returns true it
means that it completely replaces the built in system. If it returned false then the built in spindle control
would still function in addition whatever the plugin provides.

[See pendantplugin -plugin]

In CNC parlance a Pendant is a handheld remote control device used to control the CNC machine.

The easiest way to attach one to EazyCNC is via the USB interface. And by far the easiest USB device
class to use for this is HID (Human Interface Device), which requires no drivers and readily accessible from
EazyCNC using PureJavaHIDAPI.

Following shows how to scan (look for) a HID device in a plugin:

import java.util.List;

Creating a Pendant plugin



import purejavahidapi.*;

import com.eazycnc.plugin.*;

// Note, none of this has been actually tested!

public class PendantPlugin extends Plugin {
    private HidDevice m_PendantDevice;
    @Override
    public void setConnectionState(ConnectionState status) {
        // we want the pendant to work both in MACH and SIMU modes, don't we
        if (status == ConnectionState.CONNECTED || status == ConnectionState.SIMUL
ATION) {
            if (m_PendantDevice != null) { // if it was open we close before we tr
y to re-open it
                m_PendantDevice.close();
                m_PendantDevice = null;
                m_PrevMessage = null;
            }
            try {
                List<HidDeviceInfo> devList = PureJavaHidApi.enumerateDevices();
                HidDeviceInfo devInfo = null;
                for (HidDeviceInfo info : devList) {
                    if (info.getVendorId() == (short) PENDANT_VID && info.getProdu
ctId() == (short) PENDANT_PID) {
                        devInfo = info;
                        break;
                    }
                }
                if (devInfo != null) {
                    m_PendantDevice = PureJavaHidApi.openDevice(devInfo.getPath())
;
                    m_PendantDevice.setInputReportListener(new InputReportListener
() {
                        @Override
                        public void onInputReport(HidDevice source, byte Id, byte[
] data, int len) {
                            handlePendantMessage(len, data);
                        }
                    });

                } else
                    status = ConnectionState.DEVICE_NOT_FOUND;
            } catch (Exception e) {
                status = ConnectionState.SHUTDOWN;
                e.printStackTrace();
            }
        } else {



            if (m_PendantDevice != null) {
                m_PendantDevice.close();
                m_PendantDevice = null;
                m_PrevMessage = null;
            }

        }
        super.setConnectionState(status);
    }

Above scans for the device and if found attaches a message handler. (Message in HID parlance are called
'reports' which is just a fancy way to name small chuck of bytes coming from the device.)

Message handling of course totally depends on the pendant and its message format, but following sketches
one (imaginary) way of handling the messages:



...
    final private int RUN_BUTTON_INDEX = 7;
    final private int RUN_BUTTON_MASK = 0x80;
...
    private HidDevice m_PendantDevice;

    private byte[] m_PrevMessage;
    private byte[] m_LastMessage;
    private byte[] m_ChangedBits;
...
    private boolean checkBit(int index, int mask, boolean checkForChange, boolean 
checkForSet) {
        if (checkForChange && (m_ChangedBits[index] & mask) == 0)
            return false; // had not changed
        return ((m_LastMessage[index] & mask) != 0) == checkForSet;
    }
    
    private void handlePendantMessage(int len, byte[] message) {
        if (m_PrevMessage == null) {
            // if we do not have previous message, the create a copy 
            // of current message but every bit flipped so they will
            // be interpreted as changed the first time around
            m_ChangedBits = new byte[message.length];
            m_PrevMessage = new byte[message.length];
            m_LastMessage = new byte[message.length];
            for (int i = 0; i < message.length; i++)
                m_PrevMessage[i] = (byte) (message[i] ^ 0xFF);
        }
        
        // make a copy of the message, that is safer 
        System.arraycopy(message, 0, m_LastMessage, 0, message.length);
        
        // find out which bits have changed
        for (int i = 0; i < message.length; i++)
            m_ChangedBits[i] = (byte) (m_PrevMessage[i] ^ m_LastMessage[i]);

        if (checkBit(RUN_BUTTON_INDEX, RUN_BUTTON_MASK, true, true)) { // RUN-butt
on status has changed and is now set
            EazyCNC.executeAction("RUN", true); // execute the RUN-function
        }
    }

[See toolrenderer -plugin]

Implementing a custom tool path rendering



The standard way EazyCNC represents the tool and tool-path is by rendering a pink cylinder for the tool
and a red/green polygon 'line' for the tool-path. This works fine for many applications, but is not ideal for
complex three-dimensional surfaces, nor does it support four or more axis machining in any meaningful
way.

Fortunately, you can change all that by creating a plugin that creates a custom renderer.

To do that, you need to override the onCreateToolRenderer  method and return an instance of the
class ToolRenderer  (in the package com.eazycnc.toolpathrenderer ) which will do the
rendering.

Rendering is based on a subset of OpenGL ES 2.0 found in the com.eazycnc.opengl.GL class. The raison
d'être for this and other OpenGL classes is to provide a true cross-platform API that requires no code
changes to run on both Android and desktop operating systems.

The 'syntax and semantics' are compatible with OpenGL ES 2.0, but not all features are implemented at
this time.

The following code creates a renderer that represents a ball-nosed tool:

import com.eazycnc.plugin.*;
import com.eazycnc.toolpathrenderer.ToolRenderer;
import com.eazycnc.opengl.*;
import static com.eazycnc.plugin.EazyCNC.*;

public class ToolRendererPlugin extends Plugin {

    @Override
    public ToolRenderer onCreateToolRenderer() {
        return new ToolRenderer() {
            GLShape m_ToolShaft;
            GLShape m_ToolEnd;
            double m_ToolRadius;

            public void renderTool(GL gl, double[] axisPositions) {

                gl.glEnable(GL.GL_COLOR_MATERIAL);
                gl.glColor3f(1, 0, 1);

                gl.glPushMatrix();
                gl.glTranslatef((float) axisPositions[0], (float) axisPositions[1]
, (float) axisPositions[2]); // Center The Cylinder

                float r = (float) Math.abs(getParamDouble(RADIUS_COMPENSATION));

                int toolNo = getParamInt(CURRENT_TOOL);
                if (r == 0 && toolNo > 0)



                    r = (float) (getToolSpec(toolNo).getRadius());
                if (r < 1)
                    r = 1;

                if (m_ToolShaft == null || m_ToolRadius != r) {

                    int axisNo = 2;
                    int bi = MOTOR_CONFIG_BASE + MOTOR_CONFIG_STRIDE * axisNo;
                    float min = (float) getParamDouble(bi + MOTOR_LIMIT_MIN_OFFSET
);
                    float max = (float) getParamDouble(bi + MOTOR_LIMIT_MAX_OFFSET
);

                    m_ToolShaft = GLShape.createCylinder(r/2, r/2, (max-min), 16, 
1);
                    m_ToolEnd = GLShape.createSphere(r, 16,16);
                }
                m_ToolRadius = r;

                m_ToolShaft.render(gl);

                gl.glTranslatef(0, 0, 0);
                m_ToolEnd.render(gl);

                gl.glPopMatrix();

            }

            public void onOpenGlSurfaceChanged() {

            }

        };
    }
}

The above creates a tool rendering that looks like this:

To create a custom renderer for the tool-path, you need to override the onCreateToolpathRenderer



and return an instance of ToolpathRenderer  to do the job. The interface for the tool-path renderer is
deceptively simple:

public interface ToolpathRenderer {
    public void resetToolPath(boolean spindleOn);
    public void concatToolMove(boolean cut,boolean spindleOn, double radius, doubl
e[] axispos);
    public void renderToolPath(boolean plan, GL gl, Vector3f zo);
    public void onOpenGlSurfaceChanged();
}

However, the actual code to implement this in any useful way will be pretty long and complex, and
describing it would thus neither fit nor fit in this manual very well. The reason for the complexity is that the
tool-path can be very long and yet needs to be rendered tens of times per second. To do that, the actual
path needs to be cached in OpenGL Vertex Buffer Objects and managed efficiently and with thread safety
in mind, which is not an easy task. If you'd like to do that, please contact SpareTimeLabs for assistance and
some example code.

[See gcodeextension -plugin]

EazyCNC supports a large set of G and M codes, but by no means every G/M code out there.

If you want to support e.g. the M6 tool change with a real tool changer, you can do that by writing a G-code
compiler extension.

EazyCNC processes G-codes in two phases.

First, it scans through the complete G-code file and compiles the code into an internal representation that
has most of the time-consuming stuff already pre-calculated. This compilation is done before the actual
machining starts so there are no time constraints; the somewhat complex tool radius compensation, for
example, is done in this stage.

Then at machining time the pre-compiled tool path is converted into actual motor controller movements and
I/O commands for the spindle and coolant and whatnot.

Thus any G-code extension needs to hook to both of these phases and have access to the pre-parsed G-
code to play ball with the rest of the G-codes and their interpretation.

To create a G-code extension you need to override the onCreateGCodeCompilerExtension  method
and return an instance of GCodeCompilerExtension  (from the package com.eazycnc.gcode ).
Note that unlike with most other Plugin methods, it is acceptable for more than one plugin to override this
method as it is feasible that different plugins could provide support for different G-codes.

Extending G-codes



The compiler extension needs to implement a single processGcodes  method that can then process any
G-codes you want. The processGcodes  method is called once for each line of the G-code file in the
pre-compile phase. The method gets a crack at the line before any built in G-code processing takes place,
so a compiler extension can actually process and consume those G-codes that EazyCNC would ordinarily
process as well.

The processGcodes  method gets a handle to the GCodeCompiler  object from which it can query
the pre-parsed G-code line.

For example, this is how a compiler extension checks if the line being compiled contains the M6 code:

    if (compiler.getMCode(6))

Note that calling getMCode  or getGCode  for any code also consumes that code, so EazyCNC will not
process that code.

Access to axis words and other words is provided by the GCodeCompiler.getWordValue  method.
Access to the machine state/parameters is additionally provided. For details, see the javadoc.

Once the compiler extension has found a G-code it wants to process, it does what needs to be done and
submits a callback object to be run at machine time when the corresponding G-code line is executed. It
does this by creating an instance of com.eazycnc.gcode.Callback  and calling addMachCode  on
the compiler object to insert that callback to EazyCNC's internal pre-processed tool-path.

To put this into concrete terms, here is a complete plugin that processes M6 codes and emits a message to
the console at machine time every time an M6 is encountered:

import com.eazycnc.plugin.*;
import com.eazycnc.gcode.*;

public class GCodeExtensionPlugin extends Plugin {
    @Override
    public GCodeCompilerExtension onCreateGCodeCompilerExtension() {
        return new GCodeCompilerExtension() {
            public void processGcodes(GCodeCompiler compiler) {
                if (compiler.getMCode(6))
                    compiler.addMachCode(() -> System.out.println("EXECUTING M6"))
;
            }
        };
    }

Notice what a short job the Java 8 Lambda expression makes from creating the callback object!

Implementing a custom motor controller



[no plugin yet demonstrates this]

The motor controller is the part of EazyCNC that implements the low level motor controller at the level of
movements, which are specified in steps.

EazyCNC does not implement step-level control of motors because Java is not suitable for implementing
microsecond-level control of hardware. Instead, EazyCNC outsources step generation to the TOAD4
controller board. Naturally, TOAD4 is not suitable for every application for various reasons. By
implementing a custom motor controller it is possible to interface EazyCNC with other motor controllers, or
even special real-time drivers that can do the hard microsecond-level step generation.

To implement a custom motor controller, you need to override the onCreateMotorController

method and return a class that implements the MotorController  interface in the package
com.eazycnc.motorcontroller .

Like all other hardware-related plugins, the motor controller should establish the connection with the actual
hardware in the setConnectionState  method. Note also that, one way or the other, you need to
support the simulated connection state as well.

The main task of the motor controller is to receive movement commands from the EazyCNC movement
planner and forward them as fast as possible to the actual hardware. This happens in the queueMove

method, which needs to block (not return) until it can forward the movement command. This method gets
called on average at the motor update rate, which the user can configure in the
Mach Setup/Movement  panel.

But there is of course a lot more than this to developing a motor controller. Please see the javadoc for
details and don't hesitate to contact SpareTimeLabs for assistance.

1. If you want to place your classes in some other package than the Java default package, say
com.example  then you need to create the package/directory structure both in Eclipse and in the

root directory of your plugin. So in Eclipse you need to select File/New/Package  and create
com.example . Then in the your plugin's directory you need to create a sub directory com  and in

that directory create a sub directory example  and inside that directory place your Java class. Lastly
right click on Right-click on the com.example  package under the project name and select
File/New File  from the menu. In the dialogue that appears, click Advanced>> , tick the
Link to file in the file system , then click on the Browse...  button and browse to

the plugin java source file, click Open  and then Finish . ↩

2. EazyCNC uses a separate class loader for each plugin, so actually class name collision will be
resolved correctly and thus it is ok for two plugins to contain classes with identical names, which
unavoidably happens if two plugins include the same library. However the UWT uses the names of the
plugin classes find resources (graphics, translation dictionaries etc) and a name conflict may result in
not finding the resources or finding incorrect resources. ↩

file:///Users/nyholku/sparetimelabs/eazycnc/plugindev/plugin-writers-guide.md#fnref1
file:///Users/nyholku/sparetimelabs/eazycnc/plugindev/plugin-writers-guide.md#fnref2


3. In fact at the time of writing this compiling/developing plugins on Android is not supported and running
plugins created on desktop OS will need to be converted to Java 6 classes before deployment on
EazyCNC on Android. ↩

file:///Users/nyholku/sparetimelabs/eazycnc/plugindev/plugin-writers-guide.md#fnref3

